This function creates a histogram of values in GRaster. The function is modeled after graphics::hist(), but actually uses graphics::barplot().
Arguments
- x
A
GRaster.- layer
Character, numeric, or integer: Indicates which layer of a multi-layer
GRasterfor which to plot a histogram. The layer can be identified using itsname()(character) or index (numeric or integer). If this is missing, then up tomaxnllayers are plotted.- maxnl
Maximum number of layers for which to create histograms. This is 16 by default, but ignored if
layeris defined.- bins
Positive numeric integer: Number of bins in which to divide values of a raster with continuous values. For
integerand categorical rasters, each value is tallied.- freq
Logical: If
TRUE(default), plot the frequency of values. IfFALSE, plot the density of values (i.e., the number in each bin divided by the total number of cells with non-NAvalues).- ...
Arguments to pass to
graphics::barplot().
Examples
if (grassStarted()) {
# Example data
madElev <- fastData("madElev") # elevation raster
madLANDSAT <- fastData("madLANDSAT") # multi-layer raster
madRivers <- fastData("madRivers") # lines vector
# Convert SpatRaster to GRaster and SpatVector to GVector
elev <- fast(madElev)
rivers <- fast(madRivers)
landsat <- fast(madLANDSAT)
# Plot:
plot(elev)
plot(rivers, add = TRUE)
# Histograms:
hist(elev)
hist(landsat)
# Plot surface reflectance in RGB:
plotRGB(landsat, 3, 2, 1) # "natural" color
plotRGB(landsat, 4, 1, 2, stretch = "lin") # emphasize near-infrared (vegetation)
# Make composite map from RGB layers and plot in grayscale:
comp <- compositeRGB(r = landsat[[3]], g = landsat[[2]], b = landsat[[1]])
grays <- paste0("gray", 0:100)
plot(comp, col = grays)
}
