Skip to contents

droplevels() removes levels (category values) from the "levels" table of a categorical GRaster.

Usage

# S4 method for class 'GRaster'
droplevels(x, level = NULL, layer = 1)

Arguments

x

A GRaster.

level

NULL, character, numeric, integer, or logical: Level(s) to drop. If NULL (default), then all levels without values in the raster are dropped (this may remove the "levels" table entirely if all levels are dropped, converting the raster to an integer-type raster). If a character, this is the category label(s) to drop. If numeric or integer, this is the category value(s) to drop. If logical, values that are TRUE are dropped.

layer

Numeric integers, logical vector, or character: Layer(s) to which to add or from which to drop levels.

Value

A GRaster. The "levels" table of the raster is modified.

Examples

if (grassStarted()) {

# Setup
library(terra)

# Example data: Land cover raster
madCover <- fastData("madCover")

# Convert categorical SpatRaster to categorical GRaster:
cover <- fast(madCover)

### Properties of categorical rasters

cover # note categories
is.factor(cover) # Is the raster categorical?
nlevels(cover) # number of levels
levels(cover) # just the value and active column
cats(cover) # all columns
minmax(cover) # min/max values
minmax(cover, levels = TRUE) # min/max categories
catNames(cover) # column names of the levels table
missingCats(cover) # categories in table with no values in raster
freq(cover) # frequency of each category (number of cells)
zonalGeog(cover) # geometric statistics

### Active column

# Which column sets the category labels?
activeCat(cover)
activeCat(cover, names = TRUE)

activeCats(c(cover, cover))

# Choose a different column for category labels:
levels(cover)
activeCat(cover) <- 2
levels(cover)

### Managing levels tables

# Remove unused levels:
nlevels(cover)
cover <- droplevels(cover)
nlevels(cover)

# Re-assign levels:
value <- c(20, 30, 40, 50, 120, 130, 140, 170)
label <- c("Cropland", "Cropland", "Forest", "Forest",
 "Grassland", "Shrubland", "Herbaceous", "Flooded")

newCats <- data.frame(value = value, label = label)

cover <- categories(cover, layer = 1, value = newCats)
cats(cover)

# This is the same as:
levels(cover) <- newCats
cats(cover)

# Are there any values not assigned a category?
missingCats(cover)

# Let's assign a category for value 210 (water):
water <- data.frame(value = 210, label = "Water")
addCats(cover) <- water
levels(cover)

# Add more information to the levels table using merge():
landType <- data.frame(
     Value = c(20, 30, 40, 50, 120),
     Type = c("Irrigated", "Rainfed", "Broadleaf evergreen",
     "Broadleaf deciduous", "Mosaic with forest")
)
cats(cover)
cover <- addCats(cover, landType, merge = TRUE)
cats(cover)

### Logical operations on categorical rasters

cover < "Forest" # 1 for cells with a value < 40, 0 otherwise
cover <= "Forest" # 1 for cells with a value < 120, 0 otherwise
cover == "Forest" # 1 for cells with value of 40-120, 0 otherwise
cover != "Forest" # 1 for cells with value that is not 40-120, 0 otherwise
cover > "Forest" # 1 for cells with a value > 120, 0 otherwise
cover >= "Forest" # 1 for cells with a value >= 120, 0 otherwise

cover %in% c("Cropland", "Forest") # 1 for cropland/forest cells, 0 otherwise

### Combine categories from different rasters

# For the example, will create a second categorical raster fromm elevation.

# Divide elevation raster into "low/medium/high" levels:
madElev <- fastData("madElev")
elev <- fast(madElev)
elev <- project(elev, cover, method = "near") # convert to same CRS
fun <- "= if(madElev < 100, 0, if(madElev < 400, 1, 2))"
elevCat <- app(elev, fun)

levs <- data.frame(
     value = c(0, 1, 2),
     elevation = c("low", "medium", "high")
)
levels(elevCat) <- list(levs)

# Combine levels:
combined <- concats(cover, elevCat)
combined
levels(combined)

# Combine levels, treating value/NA combinations as new categories:
combinedNA <- concats(cover, elevCat, na.rm = FALSE)
combinedNA
levels(combinedNA)

}