Skip to contents

A table of vegetation indices that ca be calculated using vegIndex(). Columns include:

  • `index“: Abbreviation of the index.

  • definition: Index name

  • R, G, B, NIR, channel5, channel7: Whether or not the index uses the red, green, blue, or near-infrared channels, and channels 5 and 7.

  • soilLineslope, soilIntercept, soilNR: Whether or not the index requires soil line slope, soil intercept, and a soil noise reduction factor.

Format

An object of class data.frame.

See also

Examples


### vector data

library(sf)

# For vector data, we can use data(*) or fastData(*):
data(madCoast0) # same as next line
madCoast0 <- fastData("madCoast0") # same as previous
madCoast0
#> Simple feature collection with 1 feature and 68 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: 731581.6 ymin: 1024473 xmax: 768721.2 ymax: 1085686
#> Projected CRS: Tananarive (Paris) / Laborde Grid
#>   OBJECTID ID_0 ISO NAME_ENGLISH   NAME_ISO   NAME_FAO NAME_LOCAL NAME_OBSOLETE
#> 1        1  134 MDG   Madagascar MADAGASCAR Madagascar Madagascar              
#>       NAME_VARIANTS NAME_NONLATIN NAME_FRENCH NAME_SPANISH NAME_RUSSIAN
#> 1 Malagasy Republic               Madagascar   Madagascar    Мадагаскар
#>   NAME_ARABIC NAME_CHINESE WASPARTOF CONTAINS  SOVEREIGN ISO2 WWW FIPS ISON
#> 1      مدغشقر  马达加斯加                     Madagascar   MG       MA  450
#>    VALIDFR VALIDTO  POP2000       SQKM            POPSQKM      UNREGION1
#> 1 19581014 Present 15970364 594856.375 26.847428507427527 Eastern Africa
#>   UNREGION2 DEVELOPING CIS Transition OECD           WBREGION   WBINCOME
#> 1    Africa          1                     Sub-Saharan Africa Low income
#>                WBDEBT WBOTHER CEEAC CEMAC CEPLG COMESA EAC ECOWAS IGAD IOC MRU
#> 1 Moderately indebted    HIPC                        1                   1    
#>   SACU UEMOA UMA PALOP PARTA CACM EurAsEC Agadir SAARC ASEAN NAFTA GCC CSN
#> 1                                                                         
#>   CARICOM EU CAN ACP Landlocked AOSIS SIDS Islands LDC
#> 1                  1                             1   1
#>                         geometry
#> 1 MULTIPOLYGON (((755432.2 10...
plot(st_geometry(madCoast0))

madCoast4 <- fastData("madCoast4")
madCoast4
#> Simple feature collection with 2 features and 17 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: 731811.7 ymin: 1024542 xmax: 768726.5 ymax: 1085485
#> Projected CRS: Tananarive (Paris) / Laborde Grid
#>      OBJECTID ID_0 ISO     NAME_0 ID_1    NAME_1 ID_2       NAME_2 ID_3
#> 1070     1070  134 MDG Madagascar    5 Toamasina   17 Analanjirofo   79
#> 1098     1098  134 MDG Madagascar    5 Toamasina   17 Analanjirofo   82
#>                 NAME_3 ID_4    NAME_4 VARNAME_4 CCN_4 CCA_4    TYPE_4 ENGTYPE_4
#> 1070          Mananara 1070 Antanambe              NA       Fokontany   Commune
#> 1098 Soanierana-Ivongo 1098 Manompana              NA       Fokontany   Commune
#>                            geometry
#> 1070 MULTIPOLYGON (((760305.9 10...
#> 1098 MULTIPOLYGON (((754786.8 10...
plot(st_geometry(madCoast4), add = TRUE)

madRivers <- fastData("madRivers")
madRivers
#> Simple feature collection with 11 features and 5 fields
#> Geometry type: LINESTRING
#> Dimension:     XY
#> Bounding box:  xmin: 731627.1 ymin: 1024541 xmax: 762990.1 ymax: 1085580
#> Projected CRS: Tananarive (Paris) / Laborde Grid
#> First 10 features:
#>        F_CODE_DES          HYC_DESCRI      NAM ISO     NAME_0
#> 1180 River/Stream Perennial/Permanent MANANARA MDG Madagascar
#> 1185 River/Stream Perennial/Permanent MANANARA MDG Madagascar
#> 1197 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1216 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1248 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1256 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1257 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1264 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1300 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1312 River/Stream Perennial/Permanent      UNK MDG Madagascar
#>                            geometry
#> 1180 LINESTRING (739818.2 108005...
#> 1185 LINESTRING (739818.2 108005...
#> 1197 LINESTRING (747857.8 108558...
#> 1216 LINESTRING (739818.2 108005...
#> 1248 LINESTRING (762990.1 105737...
#> 1256 LINESTRING (742334.2 106858...
#> 1257 LINESTRING (731803.7 105391...
#> 1264 LINESTRING (755911.6 104957...
#> 1300 LINESTRING (731871 1044531,...
#> 1312 LINESTRING (750186.1 103441...
plot(st_geometry(madRivers), col = "blue", add = TRUE)

madDypsis <- fastData("madDypsis")
madDypsis
#> Simple feature collection with 42 features and 9 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: 735228.4 ymin: 1026056 xmax: 762442 ymax: 1085002
#> Projected CRS: Tananarive (Paris) / Laborde Grid
#> First 10 features:
#>        gbifID      license                  rightsHolder institutionCode year
#> 1  2397516155 CC_BY_NC_4_0                  vononarbgkew     iNaturalist 2019
#> 2  2397516017 CC_BY_NC_4_0                  vononarbgkew     iNaturalist 2019
#> 3  2397515145 CC_BY_NC_4_0                  vononarbgkew     iNaturalist 2019
#> 4  2268865622    CC_BY_4_0     Missouri Botanical Garden              MO 2006
#> 5  2268863965    CC_BY_4_0     Missouri Botanical Garden              MO 1991
#> 6  2268862328    CC_BY_4_0     Missouri Botanical Garden              MO 1994
#> 7  2268862230    CC_BY_4_0     Missouri Botanical Garden              MO 1991
#> 8  1928075921      CC0_1_0 The New York Botanical Garden              NY 2006
#> 9  1677261542 CC_BY_NC_4_0                    Landy Rita     iNaturalist 2016
#> 10 1453257920 CC_BY_NC_4_0              mamy_andriamahay     iNaturalist 2016
#>    month day coordinateUncertaintyInMeters               species
#> 1      8  11                             4       Dypsis nodifera
#> 2      8  11                             3       Dypsis nodifera
#> 3      8  11                             3       Dypsis nodifera
#> 4      9  14                            NA Dypsis betsimisarakae
#> 5     10  10                            NA       Dypsis nodifera
#> 6     10  23                            NA       Dypsis nodifera
#> 7     10  11                            NA       Dypsis nodifera
#> 8      9  15                            NA        Dypsis integra
#> 9      6  11                            17    Dypsis lastelliana
#> 10    11  29                            21    Dypsis lastelliana
#>                    geometry
#> 1  POINT (744929.8 1028994)
#> 2  POINT (745240.1 1029239)
#> 3  POINT (745067.4 1029098)
#> 4  POINT (737649.4 1044160)
#> 5  POINT (760879.5 1071766)
#> 6  POINT (748297.4 1064593)
#> 7  POINT (747876.6 1038768)
#> 8  POINT (737901.5 1044806)
#> 9  POINT (749428.6 1033303)
#> 10 POINT (745272.7 1032050)
plot(st_geometry(madDypsis), col = "red", add = TRUE)


### raster data

library(terra)

# For raster data, we can get the file directly or using fastData(*):
rastFile <- system.file("extdata/madElev.tif", package="fasterRaster")
madElev <- terra::rast(rastFile)

madElev <- fastData("madElev") # same as previous two lines
madElev
#> class       : SpatRaster 
#> dimensions  : 512, 313, 1  (nrow, ncol, nlyr)
#> resolution  : 119.7031, 119.7031  (x, y)
#> extent      : 731581.6, 769048.6, 1024437, 1085725  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madElev.tif 
#> name        : madElev 
#> min value   :       1 
#> max value   :     570 
plot(madElev)


madForest2000 <- fastData("madForest2000")
madForest2000
#> class       : SpatRaster 
#> dimensions  : 512, 313, 1  (nrow, ncol, nlyr)
#> resolution  : 119.7031, 119.7031  (x, y)
#> extent      : 731581.6, 769048.6, 1024437, 1085725  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madForest2000.tif 
#> name        : madForest2000 
#> min value   :             1 
#> max value   :             1 
plot(madForest2000)


madForest2014 <- fastData("madForest2014")
madForest2014
#> class       : SpatRaster 
#> dimensions  : 512, 313, 1  (nrow, ncol, nlyr)
#> resolution  : 119.7031, 119.7031  (x, y)
#> extent      : 731581.6, 769048.6, 1024437, 1085725  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madForest2014.tif 
#> name        : madForest2014 
#> min value   :             1 
#> max value   :             1 
plot(madForest2014)


# multi-layer rasters
madChelsa <- fastData("madChelsa")
madChelsa
#> class       : SpatRaster 
#> dimensions  : 67, 42, 4  (nrow, ncol, nlyr)
#> resolution  : 0.008333333, 0.008333333  (x, y)
#> extent      : 49.54153, 49.89153, -16.85014, -16.29181  (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (EPSG:4326) 
#> source      : madChelsa.tif 
#> names       :  bio1, bio7,  bio12, bio15 
#> min values  : 20.85,  6.2, 3230.9,  32.2 
#> max values  : 24.45, 11.9, 4608.9,  43.2 
plot(madChelsa)


madPpt <- fastData("madPpt")
madTmin <- fastData("madTmin")
madTmax <- fastData("madTmax")
madPpt
#> class       : SpatRaster 
#> dimensions  : 9, 6, 12  (nrow, ncol, nlyr)
#> resolution  : 6082.837, 6082.837  (x, y)
#> extent      : 726346.3, 762843.4, 1026783, 1081528  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madPpt.tif 
#> names       : ppt01, ppt02, ppt03, ppt04, ppt05, ppt06, ... 
#> min values  :   344,   343,   343,   246,   146,   161, ... 
#> max values  :   379,   401,   442,   395,   265,   261, ... 
madTmin
#> class       : SpatRaster 
#> dimensions  : 9, 6, 12  (nrow, ncol, nlyr)
#> resolution  : 6082.837, 6082.837  (x, y)
#> extent      : 726346.3, 762843.4, 1026783, 1081528  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madTmin.tif 
#> names       : tmin01, tmin02, tmin03, tmin04, tmin05, tmin06, ... 
#> min values  :     21,     21,     20,     19,     17,     16, ... 
#> max values  :     23,     23,     23,     22,     20,     19, ... 
madTmax
#> class       : SpatRaster 
#> dimensions  : 9, 6, 12  (nrow, ncol, nlyr)
#> resolution  : 6082.837, 6082.837  (x, y)
#> extent      : 726346.3, 762843.4, 1026783, 1081528  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madTmax.tif 
#> names       : tmax01, tmax02, tmax03, tmax04, tmax05, tmax06, ... 
#> min values  :     29,     29,     29,     28,     27,     25, ... 
#> max values  :     31,     31,     30,     30,     28,     27, ... 


# RGB raster
madLANDSAT <- fastData("madLANDSAT")
madLANDSAT
#> class       : SpatRaster 
#> dimensions  : 344, 209, 4  (nrow, ncol, nlyr)
#> resolution  : 180, 180  (x, y)
#> extent      : 344055, 381675, -1863345, -1801425  (xmin, xmax, ymin, ymax)
#> coord. ref. : WGS 84 / UTM zone 39N (EPSG:32639) 
#> source      : madLANDSAT.tif 
#> names       : band2, band3, band4, band5 
#> min values  :    15,    23,    22,    25 
#> max values  :   157,   154,   158,   166 
plotRGB(madLANDSAT, 4, 1, 2, stretch = "lin")


# categorical raster
madCover <- fastData("madCover")
madCover
#> class       : SpatRaster 
#> dimensions  : 201, 126, 1  (nrow, ncol, nlyr)
#> resolution  : 0.002777778, 0.002777778  (x, y)
#> extent      : 49.54028, 49.89028, -16.85139, -16.29306  (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (EPSG:4326) 
#> source      : madCover.tif 
#> categories  : Short, Long 
#> name        :        Short 
#> min value   : Mosaic crops 
#> max value   :        Water 
madCover <- droplevels(madCover)
levels(madCover) # levels in the raster
#> [[1]]
#>   Value                                              Short
#> 1    20                                       Mosaic crops
#> 2    30                         Mosaic cropland/vegetation
#> 3    40 Sparse broadleaved evergreen/semi-deciduous forest
#> 4    50                       Broadleaved deciduous forest
#> 5   120                       Grassland with mosaic forest
#> 6   130                                          Shrubland
#> 7   140                           Grassland/savanna/lichen
#> 8   170                                     Flooded forest
#> 9   210                                              Water
#> 
nlevels(madCover) # number of categories
#> [1] 0
catNames(madCover) # names of categories table
#> [[1]]
#> [1] "Value" "Short" "Long" 
#> 

plot(madCover)