Skip to contents

Raster of land cover for an eastern portion of Madagascar. Note that the land cover classes have been simplified, so this raster should not be used for "real" analyses.

Format

An object of class SpatRaster in unprojected (WGS84) coordinates.

References

Arino O., P. Bicheron, F. Achard, J. Latham, R. Witt and J.-L. Weber. 2008. GlobCover: The most detailed portrait of Earth. European Space Agency Bulletin 136:25-31. http://due.esrin.esa.int.

Examples


### vector data

library(sf)

# For vector data, we can use data(*) or fastData(*):
data(madCoast0) # same as next line
madCoast0 <- fastData("madCoast0") # same as previous
madCoast0
#> Simple feature collection with 1 feature and 68 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: 731581.6 ymin: 1024473 xmax: 768721.2 ymax: 1085686
#> Projected CRS: Tananarive (Paris) / Laborde Grid
#>   OBJECTID ID_0 ISO NAME_ENGLISH   NAME_ISO   NAME_FAO NAME_LOCAL NAME_OBSOLETE
#> 1        1  134 MDG   Madagascar MADAGASCAR Madagascar Madagascar              
#>       NAME_VARIANTS NAME_NONLATIN NAME_FRENCH NAME_SPANISH NAME_RUSSIAN
#> 1 Malagasy Republic               Madagascar   Madagascar    Мадагаскар
#>   NAME_ARABIC NAME_CHINESE WASPARTOF CONTAINS  SOVEREIGN ISO2 WWW FIPS ISON
#> 1      مدغشقر  马达加斯加                     Madagascar   MG       MA  450
#>    VALIDFR VALIDTO  POP2000       SQKM            POPSQKM      UNREGION1
#> 1 19581014 Present 15970364 594856.375 26.847428507427527 Eastern Africa
#>   UNREGION2 DEVELOPING CIS Transition OECD           WBREGION   WBINCOME
#> 1    Africa          1                     Sub-Saharan Africa Low income
#>                WBDEBT WBOTHER CEEAC CEMAC CEPLG COMESA EAC ECOWAS IGAD IOC MRU
#> 1 Moderately indebted    HIPC                        1                   1    
#>   SACU UEMOA UMA PALOP PARTA CACM EurAsEC Agadir SAARC ASEAN NAFTA GCC CSN
#> 1                                                                         
#>   CARICOM EU CAN ACP Landlocked AOSIS SIDS Islands LDC
#> 1                  1                             1   1
#>                         geometry
#> 1 MULTIPOLYGON (((755432.2 10...
plot(st_geometry(madCoast0))

madCoast4 <- fastData("madCoast4")
madCoast4
#> Simple feature collection with 2 features and 17 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: 731811.7 ymin: 1024542 xmax: 768726.5 ymax: 1085485
#> Projected CRS: Tananarive (Paris) / Laborde Grid
#>      OBJECTID ID_0 ISO     NAME_0 ID_1    NAME_1 ID_2       NAME_2 ID_3
#> 1070     1070  134 MDG Madagascar    5 Toamasina   17 Analanjirofo   79
#> 1098     1098  134 MDG Madagascar    5 Toamasina   17 Analanjirofo   82
#>                 NAME_3 ID_4    NAME_4 VARNAME_4 CCN_4 CCA_4    TYPE_4 ENGTYPE_4
#> 1070          Mananara 1070 Antanambe              NA       Fokontany   Commune
#> 1098 Soanierana-Ivongo 1098 Manompana              NA       Fokontany   Commune
#>                            geometry
#> 1070 MULTIPOLYGON (((760305.9 10...
#> 1098 MULTIPOLYGON (((754786.8 10...
plot(st_geometry(madCoast4), add = TRUE)

madRivers <- fastData("madRivers")
madRivers
#> Simple feature collection with 11 features and 5 fields
#> Geometry type: LINESTRING
#> Dimension:     XY
#> Bounding box:  xmin: 731627.1 ymin: 1024541 xmax: 762990.1 ymax: 1085580
#> Projected CRS: Tananarive (Paris) / Laborde Grid
#> First 10 features:
#>        F_CODE_DES          HYC_DESCRI      NAM ISO     NAME_0
#> 1180 River/Stream Perennial/Permanent MANANARA MDG Madagascar
#> 1185 River/Stream Perennial/Permanent MANANARA MDG Madagascar
#> 1197 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1216 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1248 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1256 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1257 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1264 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1300 River/Stream Perennial/Permanent      UNK MDG Madagascar
#> 1312 River/Stream Perennial/Permanent      UNK MDG Madagascar
#>                            geometry
#> 1180 LINESTRING (739818.2 108005...
#> 1185 LINESTRING (739818.2 108005...
#> 1197 LINESTRING (747857.8 108558...
#> 1216 LINESTRING (739818.2 108005...
#> 1248 LINESTRING (762990.1 105737...
#> 1256 LINESTRING (742334.2 106858...
#> 1257 LINESTRING (731803.7 105391...
#> 1264 LINESTRING (755911.6 104957...
#> 1300 LINESTRING (731871 1044531,...
#> 1312 LINESTRING (750186.1 103441...
plot(st_geometry(madRivers), col = "blue", add = TRUE)

madDypsis <- fastData("madDypsis")
madDypsis
#> Simple feature collection with 42 features and 9 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: 735228.4 ymin: 1026056 xmax: 762442 ymax: 1085002
#> Projected CRS: Tananarive (Paris) / Laborde Grid
#> First 10 features:
#>        gbifID      license                  rightsHolder institutionCode year
#> 1  2397516155 CC_BY_NC_4_0                  vononarbgkew     iNaturalist 2019
#> 2  2397516017 CC_BY_NC_4_0                  vononarbgkew     iNaturalist 2019
#> 3  2397515145 CC_BY_NC_4_0                  vononarbgkew     iNaturalist 2019
#> 4  2268865622    CC_BY_4_0     Missouri Botanical Garden              MO 2006
#> 5  2268863965    CC_BY_4_0     Missouri Botanical Garden              MO 1991
#> 6  2268862328    CC_BY_4_0     Missouri Botanical Garden              MO 1994
#> 7  2268862230    CC_BY_4_0     Missouri Botanical Garden              MO 1991
#> 8  1928075921      CC0_1_0 The New York Botanical Garden              NY 2006
#> 9  1677261542 CC_BY_NC_4_0                    Landy Rita     iNaturalist 2016
#> 10 1453257920 CC_BY_NC_4_0              mamy_andriamahay     iNaturalist 2016
#>    month day coordinateUncertaintyInMeters               species
#> 1      8  11                             4       Dypsis nodifera
#> 2      8  11                             3       Dypsis nodifera
#> 3      8  11                             3       Dypsis nodifera
#> 4      9  14                            NA Dypsis betsimisarakae
#> 5     10  10                            NA       Dypsis nodifera
#> 6     10  23                            NA       Dypsis nodifera
#> 7     10  11                            NA       Dypsis nodifera
#> 8      9  15                            NA        Dypsis integra
#> 9      6  11                            17    Dypsis lastelliana
#> 10    11  29                            21    Dypsis lastelliana
#>                    geometry
#> 1  POINT (744929.8 1028994)
#> 2  POINT (745240.1 1029239)
#> 3  POINT (745067.4 1029098)
#> 4  POINT (737649.4 1044160)
#> 5  POINT (760879.5 1071766)
#> 6  POINT (748297.4 1064593)
#> 7  POINT (747876.6 1038768)
#> 8  POINT (737901.5 1044806)
#> 9  POINT (749428.6 1033303)
#> 10 POINT (745272.7 1032050)
plot(st_geometry(madDypsis), col = "red", add = TRUE)


### raster data

library(terra)

# For raster data, we can get the file directly or using fastData(*):
rastFile <- system.file("extdata/madElev.tif", package="fasterRaster")
madElev <- terra::rast(rastFile)

madElev <- fastData("madElev") # same as previous two lines
madElev
#> class       : SpatRaster 
#> dimensions  : 512, 313, 1  (nrow, ncol, nlyr)
#> resolution  : 119.7031, 119.7031  (x, y)
#> extent      : 731581.6, 769048.6, 1024437, 1085725  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madElev.tif 
#> name        : madElev 
#> min value   :       1 
#> max value   :     570 
plot(madElev)


madForest2000 <- fastData("madForest2000")
madForest2000
#> class       : SpatRaster 
#> dimensions  : 512, 313, 1  (nrow, ncol, nlyr)
#> resolution  : 119.7031, 119.7031  (x, y)
#> extent      : 731581.6, 769048.6, 1024437, 1085725  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madForest2000.tif 
#> name        : madForest2000 
#> min value   :             1 
#> max value   :             1 
plot(madForest2000)


madForest2014 <- fastData("madForest2014")
madForest2014
#> class       : SpatRaster 
#> dimensions  : 512, 313, 1  (nrow, ncol, nlyr)
#> resolution  : 119.7031, 119.7031  (x, y)
#> extent      : 731581.6, 769048.6, 1024437, 1085725  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madForest2014.tif 
#> name        : madForest2014 
#> min value   :             1 
#> max value   :             1 
plot(madForest2014)


# multi-layer rasters
madChelsa <- fastData("madChelsa")
madChelsa
#> class       : SpatRaster 
#> dimensions  : 67, 42, 4  (nrow, ncol, nlyr)
#> resolution  : 0.008333333, 0.008333333  (x, y)
#> extent      : 49.54153, 49.89153, -16.85014, -16.29181  (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (EPSG:4326) 
#> source      : madChelsa.tif 
#> names       :  bio1, bio7,  bio12, bio15 
#> min values  : 20.85,  6.2, 3230.9,  32.2 
#> max values  : 24.45, 11.9, 4608.9,  43.2 
plot(madChelsa)


madPpt <- fastData("madPpt")
madTmin <- fastData("madTmin")
madTmax <- fastData("madTmax")
madPpt
#> class       : SpatRaster 
#> dimensions  : 9, 6, 12  (nrow, ncol, nlyr)
#> resolution  : 6082.837, 6082.837  (x, y)
#> extent      : 726346.3, 762843.4, 1026783, 1081528  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madPpt.tif 
#> names       : ppt01, ppt02, ppt03, ppt04, ppt05, ppt06, ... 
#> min values  :   344,   343,   343,   246,   146,   161, ... 
#> max values  :   379,   401,   442,   395,   265,   261, ... 
madTmin
#> class       : SpatRaster 
#> dimensions  : 9, 6, 12  (nrow, ncol, nlyr)
#> resolution  : 6082.837, 6082.837  (x, y)
#> extent      : 726346.3, 762843.4, 1026783, 1081528  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madTmin.tif 
#> names       : tmin01, tmin02, tmin03, tmin04, tmin05, tmin06, ... 
#> min values  :     21,     21,     20,     19,     17,     16, ... 
#> max values  :     23,     23,     23,     22,     20,     19, ... 
madTmax
#> class       : SpatRaster 
#> dimensions  : 9, 6, 12  (nrow, ncol, nlyr)
#> resolution  : 6082.837, 6082.837  (x, y)
#> extent      : 726346.3, 762843.4, 1026783, 1081528  (xmin, xmax, ymin, ymax)
#> coord. ref. : Tananarive (Paris) / Laborde Grid 
#> source      : madTmax.tif 
#> names       : tmax01, tmax02, tmax03, tmax04, tmax05, tmax06, ... 
#> min values  :     29,     29,     29,     28,     27,     25, ... 
#> max values  :     31,     31,     30,     30,     28,     27, ... 


# RGB raster
madLANDSAT <- fastData("madLANDSAT")
madLANDSAT
#> class       : SpatRaster 
#> dimensions  : 344, 209, 4  (nrow, ncol, nlyr)
#> resolution  : 180, 180  (x, y)
#> extent      : 344055, 381675, -1863345, -1801425  (xmin, xmax, ymin, ymax)
#> coord. ref. : WGS 84 / UTM zone 39N (EPSG:32639) 
#> source      : madLANDSAT.tif 
#> names       : band2, band3, band4, band5 
#> min values  :    15,    23,    22,    25 
#> max values  :   157,   154,   158,   166 
plotRGB(madLANDSAT, 4, 1, 2, stretch = "lin")


# categorical raster
madCover <- fastData("madCover")
madCover
#> class       : SpatRaster 
#> dimensions  : 201, 126, 1  (nrow, ncol, nlyr)
#> resolution  : 0.002777778, 0.002777778  (x, y)
#> extent      : 49.54028, 49.89028, -16.85139, -16.29306  (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (EPSG:4326) 
#> source      : madCover.tif 
#> categories  : Short, Long 
#> name        :        Short 
#> min value   : Mosaic crops 
#> max value   :        Water 
madCover <- droplevels(madCover)
levels(madCover) # levels in the raster
#> [[1]]
#>   Value                                              Short
#> 1    20                                       Mosaic crops
#> 2    30                         Mosaic cropland/vegetation
#> 3    40 Sparse broadleaved evergreen/semi-deciduous forest
#> 4    50                       Broadleaved deciduous forest
#> 5   120                       Grassland with mosaic forest
#> 6   130                                          Shrubland
#> 7   140                           Grassland/savanna/lichen
#> 8   170                                     Flooded forest
#> 9   210                                              Water
#> 
nlevels(madCover) # number of categories
#> [1] 0
catNames(madCover) # names of categories table
#> [[1]]
#> [1] "Value" "Short" "Long" 
#> 

plot(madCover)